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Abstract 
Additive manufacturing (AM) processes, such as Laser-Powder Bed Fusion (L-PBF), require real-time quality assurance to mitigate 
defects. This study aims to elucidate defect signatures through image analysis and machine learning (ML). An experiment is devised 
to insert spatter defects in a controlled repeatable manner. The experiment is monitored with high-magnification and coaxial camera 
systems enabling the systematic investigation of spatter initiation and subsequent defect formation. The study also introduces an 
easy-to-implement interpretable ML tool that highlights key features associated with the coaxial images and detected defects. The 
results indicate that large spatter particles, on the order of 200 µm, can become airborne, interfere with the laser beam, and 
contaminate local surfaces. The formed defect could be detected by the coaxial system on the subsequent layer, with the most 
important feature being the integrated image intensity. The introduced methods enable effective quantification of defect predictions 
and facilitates a deeper understanding of defect formation mechanisms. 
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1. Introduction 

Deployment of in-situ monitoring methods in Additive 
Manufacturing (AM) for mission-critical components could 
displace costly inspection methods such as micro-Computed 
Tomography (micro-CT) scanning, while enabling early detection 
of processing failures, saving significant costs in production and 
reducing waste. Yet challenges exist with handling the large 
quantities of data collected during processing. There is a need to 
automate the extraction of information for operators and 
stakeholders. Therefore, machine learning (ML) methods have 
been developed to mine important patterns from the data. 

As the prevalence of ML techniques increases, there is a strong 
need to understanding the developed methods and how the 
predictions are made. This is necessary for two reasons. Firstly, 
the end user needs a way to interpret the results of predictions 
on physical terms. Highlighting and approach would allow the 
human operator to distinguish between a prediction error and a 
likely flaw. Secondly, there is a need for the research community 
to better understand the relationship between measurement 
and defect formation. 

There has, recently, been a rapid adoption of ML methods in 
AM. This includes approaches that detect laser defocus [1], and 
surface discontinuities [2]. Multi-sensor fusion approaches 
combine sensors to enable improved detection of defects [3]. 
However, more work is needed understand the important 
predictive features and sensors, as well as the formation 
mechanisms, thereby enabling more robust defect localisation. 

This study seeks to better understand the formation 
mechanisms of spatter defects as well as the important features 
needed to detect the defect. The paper begins with a description 
of the experimental setup. This is followed by the imaging 
methods, including the high-magnification and coaxial setups. 
The results section begins with a look at defect initiation, where 
the two systems are analysed.  A detailed look at how the spatter 

defect forms a surface discontinuity is then explored. The 
detection of the defect on the subsequent layer is studied. 
Finally, the interpretable ML technique is deployed to 
understand which features were important in detecting the 
defect. 

2. Methodology   

2.1. Experiment 
The experiment is shown in Fig. 1 and is designed to encourage 

the formation of spatter particle defects at B that will be 
transferred onto A due to the direction of shielding gas. The scan 
paths on B are altered to be aligned with the gas flow which 
encourages spatter to be transferred with the flow. The laser is 
also defocussed to encourage more spatter particles to form. 
The component is manufactured on a Renishaw AM250 L-PBF 
machine. Part A is built with nominal processing parameters 
(200W laser power, 60 µm pulse distance, 80 µs exposure time). 
The laser is defocussed by 15 mm on Part B. This is repeated four 
times within the build at separate height locations for a total of 
twelve layers. This encourages the build to return to nominal 
conditions before initiating further defects. 
 

 
 

Figure 1. Experiment showing nominal main part A and neighbouring 
defect initiator, B. The laser has nominal build parameters in A and is 
defocussed in B to encourage spatter formation. Units in mm. 
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2.2. Imaging setups 
Two camera systems are used to image the build in the present 

study. The high-magnification system is used to identify 
initiation and landing sites of spatter particle defects, while the 
coaxial system is used for detection. 

The high-magnification imaging setup is shown in Fig. 2. The 
setup includes a zoom lens set to 12x magnification (Thorlabs 
MVL12X3Z). The optical train transmits light to a high-speed 
camera (Phantom Miro M310) imaging at 7,200 fps. A high-
power blue LED is used to illuminate the imaging target, with 
light transmitted into the chamber using a liquid light guide. 

Another high-speed camera is mounted coaxially (Phantom 
S200). The optical setup is modified from the previous system 
described in detail in [4]. The single camera system is capable of 
streaming continuously throughout the entire build and 
captures data at 20,000 fps. A near infrared (NIR) bandpass filter 
(950 nm) is placed in the optical train along with a Neutral 
Density filter. 

Image features were extracted from the coaxial images with 
segmentation techniques. A threshold was set above the 
background noise and the melt pool was segmented along with 
spatter particles. Four features were then extracted. Firstly, the 
spot area, which is the high intensity region of the melt pool 
associated with the keyhole, was computed by taking a 
threshold at around 60% of the maximum. Secondly, the melt 
pool area was extracted which is area of the region above the 
background noise associated with the melt pool. The number of 
spatter particles were also counted. Finally, an intensity integral 
of the image was taken by computing a summation of total pixel 
intensity. 
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where 𝐼𝑖𝑗 is the intensity of a pixel in row i, column j. 

The features are input to an ML model. A Graph Neural 
Network was deployed to detect the defects, described in 
previous studies [5, 6]. The model takes both features as well as 
the positionally encoded laser scan paths. This allows both 
geometrical and imaging information to be fused. The model 
predictions are then converted to a voxel map of each layer. For 
the purposes of this study, a single layer and single defect are 
analysed to determine the important features leading to the 
prediction of the defect. 

 
 

 
 

Figure 2. High-magnification imaging setup for the experiment. 

3. Results and discussion 

3.1. Defect initiation 
A large spatter particle is captured from the imaging systems 

is shown in Fig. 3. The defect is initiated in the very first track of 
part B. The first track is particularly susceptible to defects as 
powder is entrained from both sides of the track. Combined with 
the defocus of the laser, this results in the formation of balling 
defects. Some of the particles can become airborne. Due to the 
large surface tension of the liquid metal, the melted particles 
combine and are flung into the air in a slingshot fashion as 
previously melting material, which has not yet solidified, tugs 
backwards on the melt pool imparting momentum on the 
system. The particle ascends vertically at an angle into the gas 
flow. The laser passes back and forth on the track, interacting 
twice with the particle. However, as the gas flow acts against the 
particle, it changes direction and is transferred onto the 
neighbouring part A, where it lands on the surface as a large 
balling flaw. 
 

 

Figure 3. The initial formation of a large spatter particle from 0 to 1.39 ms as the laser scans the first track of part B. The particle becomes airborne 
and proceeds to interfere with the laser from 3.33 to 3.75 ms as the laser returns for the second scan track, leaving a void. 

 



  

 

 
 

Figure 4. A large spatter particle path captured by each imaging system. 
The particle remains airborne for around 61 ms. 

 
 The trajectory of the particle can be seen in Fig. 4. The particle 

was also visible in the coaxial images (inset of Fig. 4). Since the 
particle is airborne for several scan track traversals (a total of 61 
ms), there was also a tendency to observe interaction with the 
laser. Additionally, many more smaller particles also readily 
contaminated the neighbouring part. 

Therefore, this type of defect is of particular interest as it has 
two failure modes. Firstly, it can interfere with the laser energy 
input, therefore potentially causing localised lack-of-fusion. 
Secondly, as the particles are large (around 200 µm), they pose 
significant risk of surface contamination, therefore, interfering 
with the melting process on the proceeding layers. A total of five 
defects form in this manner over the twelve layers (41.6%) 
suggesting the method is repeatable yet maintains the 
stochastic nature of a process induced flaw.  Such events are 
relevant to geometries that are close by on the build plate 
meaning there is an increased risk of cross-contamination. 
 
3.2. Defect detection and interpretation 

The coaxial data for the subsequent layer was also analysed 
for anomalies. The detection map determined from the coaxial 
imaging system is shown in Fig. 5, overlaid on the landing site of 
the spatter particle. The particle had a strong influence on the 
scanning tracks on the next layer that contributed to variation 
beyond the particle itself, as can be seen by the larger detection 
region. 

 

 
 

Figure 5. Prediction map of the subsequent layer overlaid onto the 
previous layer where the surface defect can be observed. 

To better quantify how the particles were detected, a 
permutation feature importance measure was computed [7]. To 
determine the score, each feature was randomly permuted 
individually. The importance of the feature was then determined 
by how much the performance reduced. In this case, the 
performance was measured by taking the number of detections 
within a 100 µm radius of the defect. The detection at baseline 
was 100%, therefore the error was measured in relation to this 
for each feature. 

The result is shown in Fig. 6. The intensity integral was by far 
the most important with an average 77% performance drop 
when this feature was permuted. This is followed by spot area 
at 4%, melt pool area at 1% and spatter number at 0%. The result 
suggests that little spatter forms during interaction with the 
particle but that there is a significant loss in intensity. 

 

 
 

Figure 6. The most influential features were computed with a 
permutation feature importance method. 

4. Conclusion      

In this study, an approach to create spatter defects was 
verified through both high-magnification and high-speed coaxial 
imaging. The formation of a large spatter particle of 
approximately 200 µm was observed as multiple smaller 
particles combined. Two failure mechanisms were observed. 
Firstly, the spatter particle interfered with the laser and secondly 
contaminated a nearby surface. Similar defects were observed 
to form in five of the twelve layers. The surface contamination 
could be detected on the following layer using the coaxial 
system. The integrated intensity feature was shown to have 
highest feature importance, leading to a drop in detection 
performance of 77%. The work highlights the ability of the 
system to detect both identified failure modes, suggesting in-
situ monitoring systems can observe both spatter defect 
initiation and surface contamination. This is important to enable 
robust detection systems. In future, the impact of spatter 
defects on material properties should be characterised and 
more failure mechanisms should be explored such as keyhole 
porosity detection. Furthermore, uncertainty in the 
measurement should be quantified by studying the performance 
on a larger dataset. 
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