
 

          
 
 

Joint Special Interest Group meeting between euspen and ASPE 
Advancing Precision in Additive Manufacturing 

KU Leuven, Belgium, September 2023 
www.euspen.eu  

Enhancing keyhole porosity detection in laser powder bed fusion using a hybrid 
approach of machine learning and physics-informed knowledge 
 
Zhengrui Tao1, Aditi Thanki1,2, Louca Goossens1, Ann Witvrouw1,2, Bey Vrancken1,2, Wim Dewulf1,2 
  
1KU Leuven, Department of Mechanical Engineering, Belgium 
2Flanders Make@KU Leuven 
 

zhengrui.tao@kuleuven.be 

  
Abstract 
The increasing use of Laser Powder Bed Fusion (L-PBF) in various industrial sectors is driven by its ability to produce parts with greater 
control over dimensional accuracy and surface roughness compared to other Additive Manufacturing (AM) techniques. However, 
keyholes - narrow and deep melt pools - may form during the process, leading to porosity in the final product and highlighting the 
need for real-time detection and prevention of keyhole porosity. In this paper, physics-informed signatures of the meltpool were 
extracted from in-situ optical meltpool images, including morphology and spatial distribution of spatter ejecta and meltpool. The 
extracted signatures were then analyzed using computationally feasible machine learning (ML) methods. The proposed approach 
uses a high-speed CMOS camera to record the L-PBF process zone, enabling real-time detection of keyhole porosity without 
complicated computations. The investigation involved the production of 12 scan tracks on the top surface of a cuboid made of Ti6Al4V 
with controlled keyhole pores by doubling the laser power or halving the scanning speed. Simple ML models such as Support Vector 
Machine were used to identify the occurrence of keyhole pores, achieving high statistical fidelities with Area Under Receiver 
Operating Characteristic (AUROC) and Area Under Precision-Recall Curve (AUPRC) reaching 93% and 90%, respectively. Overall, using 
a high-speed CMOS camera, the proposed process-informed dataset building, physics-informed feature engineering, and simple ML 
methods demonstrate high-accuracy production quality monitoring. This approach provides a more straightforward and more 
accessible solution for real-time detection of keyhole porosity during L-PBF, which can lead to timely adjustments and improvements 
in the quality of printed parts. 
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1. Introduction 

During the L-PBF process, the meltpool is generated by 
directing a laser beam on the metal powders, and then solidifies 
to the consolidated structure. Consequently, the meltpool is a 
fundamental feature of this process, and its stability, 
dimensions, and behavior play a critical role in determining the 
quality of the process. Co-axial meltpool monitoring (MPM) is 
commonly deployed in situ for L-PBF AM processes. Unlike off-
axis imaging, co-axial MPM offers much greater spatial 
resolution across the part surface by utilizing the laser-galvo 
system to 'scan' the camera field of view across the build plane 
in synchronization with the laser [1]. Multiple algorithmic 
methods for correlation between meltpool images and 
porosities exist [2,3]. There are misalignments between the 
locations of keyhole pores in X-ray computed tomography (X-CT) 
volume and the positions of the sensor signaled when pores 
were initially generated. The keyhole pores can move within the 
meltpool after pinching off the keyhole, leading to substantial 
mislabeling. Researchers at KU Leuven have recently focused on 
a method of many co-axial MPM images to one keyhole pore in 
scan track experiments. Generally, this method takes sequential 
co-axial MPM images considering the camera's frame rate and 
thermal-affect duration time, and the meltpool length and scan 
speed determine the latter. Then, the images can be stacked and 
registered to one location in X-CT volume, corresponding to the 
laser spot position. 

The physics-informed MPM image features that target L-PBF 
keyhole porosity are extracted. When used with simple ML 

models, a small set of pragmatic, physics-informed features will 
detect pores at par with a complex and computationally 
intensive deep-learning model using raw meltpool images. 
Besides, the process-informed many-to-one dataset and the 
physics-informed featuring engineering make the model training 
more interpretable. This paper aims to explore and demonstrate 
the idea and build upon the scan track experiment. 

2. Methodologies 

This paper describes the process for collecting data, labeling 
single-track quality based on X-CT, extracting features from 
MPM data, and developing ML models. Our methodology can be 
applied to other metal AM systems, not just the L-PBF hardware 
used in our study. The collected MPM video can also be obtained 
using different sensing modalities. 

 
2.1. Experiment design 

A dense cuboid part (10 mm×10 mm×5 mm) was built with 12 
scan tracks on the top surface. The feedstock material used is Ti-
6Al-4V grade 23 powder, with a particle size ranging between 
15-45 µm. The layer thickness is 30 µm, and the hatch space is 
70 µm for the substrates and the single-line tracks. The 
parameters are listed in Table 1, and the in-situ MPM image and 
the X-CT volume are shown in Figure 1. The image size is 80×80 
pixels, with each pixel having an 8-bit grayscale depth. The 
calibrated pixel size is 14 µm, resulting in a field of view of 1120 
µm×1120 µm. 

 
 



  
Table 1 L-PBF process parameters 
 

Process 
Step 

Laser 
Power  
P (W) 

Scan 
Speed  
v (mm/s) 

Length 
L (mm) 

Line 
Number 

Cuboid 170 1000 10 / 
C1 340 1000 6 1-6 
C2 170 500 8 7-8 

 
 

 
 
Figure 1. An MPM image depicting a meltpool moving downwards and 
X-CT volume. 

 
2.2. Porosity analysis 

The part was scanned on a Nikon XT H 225 ST. A magnification 
factor of 20 was applied, resulting in a voxel size (resolution) of 
10 μm. Reconstruction of volumetric data from the individual 
projection images was completed in CT-Pro 3D  with a Feldkamp-
David-Kress algorithm using a Shepp-Logan digital filter. The 
reconstructed volume represented as unsigned 16-bit integers 
were then imported into VGStudio MAX 2022.1 as a .raw file. To 
facilitate registration and fit geometric primitives to the sample, 
a thresholding operation was performed on the volume. This 
operation involved two stages: first, the volume was segmented 
using the ISO50 method, and then the surface was refined using 
VG's "advanced mode" with a search distance of 8 voxels to 
eliminate all particles and voids. This advanced method allows 
for surface determination at a sub-voxel level. Following 
thresholding, the part coordinate system was established using 
a 3-2-1 registration, aligning it with the component's orientation 
in the baseplate. Each scan track, consisting of 6 layers beneath 
the line scan, was segmented from the X-CT volume for porosity 
analysis. 

The VGEasypores relative algorithm [4] was employed for 
porosity analysis, in which the contrast (%) is setting 15, and the 
local area size (%) is using 10 and checking the refinement and 
setting the search distance as 3 voxels. The pores below 8 voxels 
are filtered out, and keep the larger pores. The cross-section 
slices, spaced at 5 µm intervals along the scan direction, were 
exported as 16-bit TIF images, with pores marked in the dark. 
The slices were then processed in MATLAB, such as filtering, gray 
scaling, and binarization with pores marked in white. In one 
cross-section slice, if one pixel is white, the label for the cross-
section is 1. Thus, the in-process keyhole porosity detection can 
be treated as a binary classification problem. 

 
2.3. L-PBF process-informed knowledge 

In this work, meltpool dynamics are modeled as a time series 
problem. Multiple MPM frames across one location impact the 
status of that position, as shown in Figure 2. Considering frame 
rate, scan speed, and the average meltpool length, the camera 
takes 13 images for Lines 6-10 and 11 images for Lines 1-5 when 
the meltpool passes by one position in the scan track. Here we 
choose 13 images for both scan track groups to facilitate unified 
processing, which means 13 neighboring MPM images may 
contain information about one position's porosity formation. 

 

 
 

Figure 2. Schematic diagram of L-PBF process-informed dataset 
 
2.4. Physics-informed feature engineering 

Physically intuitive signatures were extracted from MPM 
frames, such as meltpool morphology, spatter morphology, 
temperature distribution, etc. These features are outlined in 
Table 2. Deep Autoencoders (DAE) are designed to compress 
input data into a compact feature vector using an encoder and 
then reconstruct the original data using a decoder. The DAE 
decomposes the MPM image into interpretable representations, 
offering a proper feature space for ML models to learn the 
boundary between the Non-keyhole pore and the Keyhole pore. 
Thus, 104 features can be obtained from one MPM image. 
Considering one sample with 13 MPM images, a feature matrix 
with a dimension of (13, 104) for each sample. To enable ML 
models to process the features, the 13 rows of the matrix are 
fused into a single row, resulting in a vector with 104 elements. 
The simple feature fusion method, Mean operation, is applied 
along the row direction. 

 
Table 2 Physics-based Features from one MPM image 

 
Features Dimension Features Dimension 
Meltpool 
length 

(1,) Temperature 
gradient 

(80,) 

Meltpool 
width 

(1,) #Spatter (1,) 

Meltpool 
eccentricity 

(1,) Spatter area (1,) 

Meltpool area (1,) Spatter ratio (1,) 
Meltpool 
perimeter 

(1,) Latent 
vector 

(16,) 

 
Next, in Figure 3, we test the ability of the extracted features 

to differentiate between the formation of keyholes without the 
need for an ML model. It is noticed that the meltpool features 
and latent vectors ((a) and (d)) show more discernable clustering 
compared to the temperature gradient and spatter-related 
features ((b) and (c)). However, there are significant overlaps 
between Non-keyhole pore and Keyhole pore regimes. The 
significant overlap between these clusters and the nonlinear 
interaction between features necessitates the need for ML 
models. 

 



  

 
Figure 3. Correlation between features, where (a) and (b) depict 
Meltpool and Spatter-related features, and (c) and (d) depict the 
temperature gradient and latent vector. 

3. Results and discussions 

All the ML models are implemented in Scikit-learn [5] or Keras 
[6]. The setting parameters and the parameters to be tuned 
using a five-fold grid search are both listed in Table 3. Other 
parameters needed to establish the models are default. 

 
Table 3 Parameters used in simple ML models 

 

Models Setting 
parameters 

Parameters to be 
tuned 

Logistic 
Regression 
(LR) [7] 

solver=’saga’, 
max_iter=300 

C=[10^-5, 10^-3, 10^-1, 
1,10, 1000, 10^5], 
Penalty={‘l1’, ‘l2’} 

K-Nearest 
Neighbors 
(KNN) [8] 

n_neighbors={3, 5, 11, 19}, 
weights={'uniform', 'distance'} 

Gaussian 
Naive Bayes 
(GNB) [9] 

 

Support 
Vector 
Machine 
(SVM) [10] 

probability=True 

C={0.001, 0.01, 0.1, 1, 
10}, 
gamma={0.0001, 0.001, 
0.01, 0.1, 1} 

Decision 
Tree (DT) 
[11] 

max_features={1,3,10}, 
min_samples_split={2,3,10}, 
min_samples_leaf={1,3,10}, 
criterion={'entropy', 'gini',' log_loss'} 

Random 
Forest (RF) 
[12] 

max_features={1,3,10}, 
min_samples_split={2,3,10}, 
min_samples_leaf={1,3,10}, 
n_estimators={20,50,100}, 
criterion={'entropy', 'gini',' log_loss'} 

Multilayer 
Perceptron 
(MLP) [13] 

model.add(Dense(64, input_dim=104, 
activation='relu')), 
model.add(Dropout(0.7)), 
model.add(Dense(1, activation='sigmoid', 
bias_initializer=output_bias)) 

 
Table 4 presents the performance of ML models. The green-
marked rows indicate the top two models: RF and SVM. The 
results demonstrate that utilizing 104 features as predictors 
achieved excellent capability for identifying keyhole pores, with 
the RF model reaching an AUROC  of 0.93 and AUPRC of 0.9. 
 
Table 4 Results of keyhole pore detection using simple ML models (refer 
to Table 3 for the acronyms) 
 

Models AUROC AUPRC 
LR 0.76 0.7 
KNN 0.89 0.85 
GNB 0.63 0.52 
SVM 0.91 0.86 
DT 0.78 0.64 
RF 0.93 0.9 
MLP 0.9 0.84 

5. Conclusion 

This study demonstrates a method for detecting keyhole 
formation in L-PBF by utilizing physically intuitive meltpool 
signatures and simple ML models. This study's main 
contributions are twofold: firstly, establishing a many-to-one 
dataset considers the interaction between meltpools during 
laser spot moves, resulting in a more physics-interpretable and 
label-aligned method than the traditional one-to-one approach. 



  
Secondly, combining interpretable physics-informed signatures 
with readily implementable ML models allows for rapid 
detection of pores and eliminates the delay inherent in complex 
data-driven defect detection algorithms. This study represents a 
significant advancement toward the online, real-time detection 
of defects during the L-PBF building process. 
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