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Abstract 
Laser powder bed fusion (LPBF) additive manufacturing has the potential of efficiently producing components with high resolution 
and complex geometry. However, during LPBF the as-manufactured layers usually possess rough surfaces due to spattering and 
other mechanisms that lead to porosity formation and unsatisfactory mechanical properties, necessitating extensive post-processing 
prior to being deployed for practical applications. Fringe projection profilometry (FPP) is a cost-effective, non-invasive technology 
that has been developed for in-situ LPBF surface measurement. This work is aimed to develop a joint monitoring system that 
combines in-situ FPP and spatter monitoring systems to extract in-process layer surface features alongside melt pool spattering 
signatures, which together can serve as relatively comprehensive implications of potential defects that could be caused by spatters, 
balling, or shrinkage. Then, multiple regression models are developed to correlate the FPP-measured thickness profiles and the 
inferred layer-wise surface defects with the ex-situ characterized part properties including hardness, and fatigue life. The proposed 
multi-monitoring framework can help optimize or control LPBF processes for achieving improved mechanical properties.
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1. Introduction  

Laser powder bed fusion (LPBF) additive manufacturing (AM) 
process utilizes the laser as the energy input to sinter or melt 
metal powders for fabricating complicated designs with high 
resolution. This technology has been widely used in industries 
such as aerospace and automobile due to its flexibility and 
suitability for rapid prototyping. However, LPBF faces 
challenges in attaining desired mechanical properties such as 
long fatigue life, good surface quality, and high part density 
ratio due to the complex physics interplays between powder, 
laser, and fused part.   

Spatter, a characteristic phenomenon of LPBF process, is the 
ejected materials from the melt pool (MP) induced primarily by 
the recoil pressure and Marangoni effect [1]. The redeposition 
of spatters is one of the main sources causing rough layer-wise 
surfaces and the formation of lack of fusion porosity [2, 3]. 
Furthermore, the generation of the spatters also indicates the 
processing regimes such as transition, keyholing, and lack of 
fusion. Spatters are divided into solid spatter, metallic jet, 
entrainment melting spatter, and defect induced spatter based 
on the previous studies [4]. Because of the detrimental effects 
of spatters, there is a significant need to develop monitoring or 
simulation methods to characterize and quantify the impacts of 
spatters on part properties. However, state-of-the-art 
simulation is expensive in computation time, making it not 
suitable for part-scale modeling. As a cost-effective solution, 
off-axis camera monitoring is broadly used to study the 
generation of the spatters from the melt pool, but faces 

challenges to capture the whole dynamics from ejection to 
landing [5, 6].  

Surface roughness is an important metric used to evaluate 
the quality of printed samples, and can be determined by 
surface topography, which can provide information about 
surface defects including recoater crash, surface porosity, and 
redeposited spatters [7]. It is essential to monitor the layer-
wise surface topography during the printing process to qualify 
the final printed part. Fringe projection profilometry (FPP) is 
the structure light projection methodology which has recently 
been adopted to monitor in-situ surface topography for LPBF 
[8, 9]. The FPP system is a non-contact metrology which is 
capable of acquiring high-resolution height map of the target 
geometry in relatively short time, making it suitable for 
monitoring LPBF manufacturing processes. The basic system is 
composed of a projector and a camera. The projector projects 
sinusoidal patterns to the target, and the camera captures the 
pattern which is distorted by the target geometry.  Most of the 
research performed in using FPP to monitor LPBF process 
focuses on improving measurement accuracy. For example, 
researchers have investigated the impact of the camera and 
projector angle on the final measurement performance [10]. 
However, there is a lack of study on investigating or correlating 
the measured layer-wise surface topography to mechanical 
properties of the printed part.  

In sum, this work aims to utilize the spatters and surface 
topography monitored by the lab-designed multi-modal 
monitoring systems to predict printed part’s mechanical 
properties including fatigue life, hardness, and critical crack 
location. The developed model will first extract surface 



topography and spatter features, and then fuse these 
quantified features for analyzing their correlations to 
mechanical properties. The developed model will assist the 
real-time control of the process by revealing the roles of the 
spatters and the surface topography on defects and properties.  

2. Methodology

In this work, an in-house FPP system and method is 
implemented for surface topography measurement. 
Meanwhile, an off-axis high-speed camera is used for capturing 
the spatters. The systems setup on the commercial EOS M290 
LPBF machine is shown in Figure 1. 

Figure 1. Our in-situ FPP and spatter monitoring systems set up on an 
EOS M290 laser powder bed fusion printer 

2.1. Fringe Projection Profilometry System 

The FPP system has one DLP projector (LightCrafter 4710 
EVM G2, Texas Instruments, Dallas, TX) and one CMOS 
monochrome camera (BFS-U3-120S4M-CS USB 3.1 
Blackfly). Three sinusoidal patterns are projected to the build 

area during the printing with phase shift of 0 �, 
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The three-step phase shifting algorithm is used to compute the 
wrapped phase value.  
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Shown in Equation (1), the camera captured intensity at the 
given pixel location � and � (�(�, �)) is the function of ambient 
background intensity �, projector bias �, and wrapped phase 
value �. � is the phase shift of the projected pattern. For FPP 
system, one major phase error source is from the camera and 
projector nonlinearity. To account for the nonlinearity between 
the projected intensity and camera captured intensity, the 
correction factor ��� is implemented as presented in Equation 

(2). The value of ��� is determined empirically by projecting 20 

even-spaced different grayscale intensities from 0 to 255. The 
two-dimensional Fast Fourier Transform (2D FFT) filter is used 
to reduce the phase jump error after phase unwrapping stage. 
In this work, the linear model is used to calibrate the 
unwrapped phase to height relation.  

2.2. Off-axis Camera Spatter Monitoring and Machine 
Learning aided Data Processing 
The high-seed CMOS camera (Fastec IL5Q) is installed outside 
of the building chamber at an angle (Figure 1) to capture the 

melt pool and spatters generation with the resolution of 
640×512 pixels. The spatial coordinates of the melt pool is 
registered using the framework developed in our previous work 
[3]. After the spatial coordinate registration, the perspective 
corrected images are cropped to focus on the MP and ejected 
spatters. The semantic segmentation neural network is then 
used to label the pixels into three categories (background, melt 
pool, and spatters). The neural network is the DeepLabv3 
convolutional neural network (CNN) with Atrous convolution 
[11]. The model is trained with manually labelled images from 
MPs of different processing regimes including transition, 
keyhole, and lack of fusion. Unlike the standard convolution 
operation, Atrous convolution is used which the convolution 
filter is dilated with certain strides.  This design allows the 
convolution filter to have a broad field of view and consider 
features with flexible resolution. For the standard 1 channel 
grayscale image data, the output feature map is computed as: 
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� is the dilated stride, and � is the kernel size. When the dilated 
stride is 1, the convolution filter is identical to the standard 
depth-wise convolution kernel filter.  
In this work, spatter count is extracted from the segmented MP 
images using Density-based spatial clustering of applications 
with noise (DBSCAN). For more details on the spatter 
registration, please refer to our previous work [12]. 

2.3. Ex-situ Mechanical Testing 
2.3.1 High Cycle Fatigue Testing 

All testing in this work was conducted in force control on an 
MTS model 370 servohydraulic test system (Eden Prairie, MN, 
USA). Specimens were gripped using hydraulic wedge grips 
with serrated steel inserts using 1/16” thick garolite shims to 
prevent fatigue specimens from fracture in the grip sections. 
Guides were used to insure alignment of fatigue specimens 
between the wedge grips. The guides were installed using a flat 
calibration specimen and a level to insure vertical alignment of 
fatigue specimens. The high cycle fatigue (HCF) test conditions 
comprised of a stress ratio (�) of 0.1, a maximum stress (����) 
of 500 MPa, and a loading frequency of 20 Hz with a sinusoidal 
wave form in lab air. 

2.3.2 Hardness Testing 

Vickers hardness testing was conducted in accordance with 
ASTM E384 on the grip regions of all specimens (polished up to 
400 grit) using a LECO LM248AT Microhardness Tester with 500 
gf weight applied. Each specimen was indented 20 separate 
times and all indentations were measured using the integrated 
optical microscope of the LECO LM248AT system.  

3. Experiment Design

To investigate the effects of spattering and layer-wise surface 
topography on the mechanical properties of the printed part, 
five fatigue test samples (fatigue bars) are printed using the 
commercial EOS M290 laser powder bed fusion machine. The 
printing material is a commercial Ni-Cr super alloy (Inconel 718) 
metal powder. All the test samples are designed based on the 
ASTM E466 standards, and the default nominal setting are used 
including laser power of 285 W, laser scan speed of 960 mm/s, 
layer thickness of 40 μm, and hatching distance of 110 μm with 
67 degrees of scan angle rotation. The strip hatching pattern is 
enabled with a strip width of 10 mm. In this work, the off-axis 
camera data is acquired at 1000 frame rate per second (fps), 
and the field of view is 200 mm × 180 mm on the built plane.  



4. Results and Discussion

In this section, data registration results for spatters, and 
regression analysis between fused signatures and ex-situ 
characterized mechanical properties including fatigue life and 
hardness are performed.  

4.1. Machine Learning aided Spatter Registration 

With the methods in Section 2.2, the machine learning model 
is trained on 1000 manually labelled images with the data split 
strategy of 70% for training, 10% for validation, and 20% for 
testing. The training and validation histories are shown in 
Figure 2, and the highest validation accuracy is 99.14% at 
iteration 144. The model with highest validation accuracy is 
saved and tested on the unseen test dataset, attaining the test 
accuracy of 99.18%. Sample results for the registered MP 
spatter count of six monitored layers are shown in Figure 2 (c). 
It is observed that spatter counts vary among different layers 
as the results of different hatching scan angles. Furthermore, 
the small number of spatters observed for the contour of 
fatigue bar suggests the relationship between spatters and 
nominal processing parameters (laser power and scan speed). 

4.2 Regression Analysis between in-situ signatures and ex-situ 
Mechanical Properties  
The areal surface roughness is computed as the signature from 
topography data acquired using FPP system.  

Figure 3. In-situ monitored signatures for the five fatigue test samples. 
x axis is the layer number. (a) Average spatter count; (b) Areal surface 

roughness (Sa) 

Figure 2. Machine learning aided spatter registration training and sample results. (a) Training and validation accuracy history (b) Training 
and validation loss histories; (c) Sample spatter count signature map for six layers monitored



Shown in Figure 3, both the average spatter count and areal 
surface roughness varies among different layers. Despite all the 
fatigue specimens are manufactured under same nominal 
processing parameters, in-situ data reveals that Sample 3 and 
Sample 4 result in larger Sa comparing to sample 1, 2, and 5. 
While Samples 3, 4, and 5 all present larger number of spatters 
monitored from Figure 3(a), it should be noted that the 
spatters captured by the off-axis camera is the spatter initiation 
but not the re-deposition. For this reason, the top to bottom 
gas flow is assumed to cause some spatters that are ejected 
from Sample 5 to land on Samples 3 and 4. The average layer-
wise surface roughness, calculated as the arithmetic mean of 
all the layers’ surface roughness (Sa), from Table 1 also 
suggests the potential defects formed due to poor surface 
quality from Samples 3 and 4.  

Table 1. In-situ monitored signatures and ex-situ characterized Vicker;s 
Hardness and High Cycle Fatigue Life 

Sample Average 
Spatter 
Count 

Average 
Surface 

Roughness 
(µm) 

Vicker’s 
Hardness 

(HV) 

Fatigue 
Life 

(Cycles) 

1 5.36 18.62 491.3 7.12E+6 

2 5.13 18.50 500.4 9.30E+6 

3 5.67 22.20 482.8 4.51E+6 

4 6.17 22.83 487.2 4.00E+6 

5 6.35 20.87 490.2 7.80E+6 

Ex-situ characterized results show that Sample 3 and Sample 
4 exhibit shorter fatigue life and lower hardness comparing to 
other samples. This observation is consistent with the 
observations from in-situ layer-wise surface roughness which 
sample 3 and 4 expose rougher surfaces. Regression analysis is 
then performed to correlate the in-situ signatures and ex-situ 
characterized properties. In this work, support vector machine 
(SVM), linear regression, and Gaussian process regression are 
used.  

Table 2. Performances of Regression models with different metrics 

Model Objective Root 
Mean 
Squared 
Error 
(RMSE) 

Mean 
Absolute 
Error 
(MAE) 

Mean 
Squared 
Error 
(MSE) 

Support 
Vector 
Machin
e (SVM) 

Hardness/Fat
igue Life 

2.84/2.8
E+5 

1.71/2.8
E+5 

8.07/7.8E
+10 

Linear 
Regressi

on 

Hardness/Fat
igue Life 

2.19/8.3
E+5 

1.87/7.0
E+5 

4.81/6.9E
+11 

Gaussia
n 

Process 
Regressi

on 

Hardness/Fat
igue Life 

2.50/2.8
E+5 

1.86/2.6
E+5 

6.24/8.2E
+10 

All the regression models reach high accuracy in correlating 
the bar-wise in-situ signatures and the ex-situ characterized 
fatigue life and Vicker’s Hardness. This proves the importance 
of characterizing both spatters and surface roughness during 
the printing process, and their effects on the as-printed part 
properties. The experimental design also suggests that the 
dynamic LPBF manufacturing process is fluctuating, and 

samples with same nominal machine setting can exhibit 
significant different properties as reflected by the high-cycle 
fatigue and hardness tests.  

5. Conclusion and Future work 

This work developed a comprehensive monitoring system for 
laser powder fusion process to characterize in-process layer-
wise surface topography and spatter ejection metrics. Further 
regression analysis reveals the relationship between these in-
situ signatures to the fatigue life and hardness of printed 
sample. It is shown that ex-situ mechanical properties can be 
accurately inferred from the in-situ spatter count and layer-
wise surface roughness. Future works include establishing a 
more generalized model by adding more experimental data for 
the regression analysis. Furthermore, current analysis is 
performed on bar-wise signatures, more studies on how to 
effectively use the layer-wise signatures to predict the ex-situ 
properties should be performed.  

References     

[1]  H. Chen and W. Yan, "Spattering and denudation in laser powder 
bed fusion process: Multiphase flow modelling," Acta Materialia, 
vol. 196, pp. 154-167, 2020, doi: 10.1016/j.actamat.2020.06.033. 

[2]  R. Esmaeilizadeh, U. Ali, A. Keshavarzkermani, Y. Mahmoodkhani, E. 
Marzbanrad, and E. Toyserkani, "On the effect of spatter particles 
distribution on the quality of Hastelloy X parts made by laser 
powder-bed fusion additive manufacturing," Journal of 
Manufacturing Processes, vol. 37, pp. 11-20, 2019/01/01/ 2019, 
doi: https://doi.org/10.1016/j.jmapro.2018.11.012. 

[3] H. Zhang, C. K. P. Vallabh, and X. Zhao, "Registration and fusion of 
large-scale melt pool temperature and morphology monitoring 
data demonstrated for surface topography prediction in LPBF," 
Additive Manufacturing, vol. 58, p. 103075, 2022/10/01/ 2022, doi: 
https://doi.org/10.1016/j.addma.2022.103075. 

[4] D. Wang et al., "Mechanisms and characteristics of spatter 
generation in SLM processing and its effect on the properties," 
Materials & Design, vol. 117, pp. 121-130, 2017. 

[5] Y. Zhang, J. Y. H. Fuh, D. Ye, and G. S. Hong, "In-situ monitoring of 
laser-based PBF via off-axis vision and image processing 
approaches," Additive Manufacturing, vol. 25, pp. 263-274, 2019, 
doi: 10.1016/j.addma.2018.10.020. 

[6] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. 
Clare, "Review of in-situ process monitoring and in-situ metrology 
for metal additive manufacturing," Materials & Design, vol. 95, pp. 
431-445, 2016, doi: 10.1016/j.matdes.2016.01.099. 

[7] A. Triantaphyllou et al., "Surface texture measurement for additive 
manufacturing," Surface Topography: Metrology and Properties, 
vol. 3, no. 2, 2015, doi: 10.1088/2051-672x/3/2/024002. 

[8] B. Zhang, J. Ziegert, F. Farahi, and A. Davies, "In situ surface 
topography of laser powder bed fusion using fringe projection," 
Additive Manufacturing, vol. 12, pp. 100-107, 2016, doi: 
10.1016/j.addma.2016.08.001. 

[9] H. Zhang, C. K. P. Vallabh, Y. Xiong, and X. Zhao, "A systematic 
study and framework of fringe projection profilometry with 
improved measurement performance for in-situ LPBF process 
monitoring," Measurement, vol. 191, 2022, doi: 
10.1016/j.measurement.2022.110796. 

[10] N. M. O’Dowd, A. J. Wachtor, and M. D. Todd, "Effects of digital 
fringe projection operational parameters on detecting powder bed 
defects in additive manufacturing," Additive Manufacturing, vol. 
48, 2021, doi: 10.1016/j.addma.2021.102454. 

[11] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, "Rethinking 
atrous convolution for semantic image segmentation," arXiv 
preprint arXiv:1706.05587, 2017. 

[12] H. Zhang, C. K. P. Vallabh, and X. Zhao, "Influence of Spattering on 
In-process Layer Surface Roughness during Laser Powder Bed 
Fusion," arXiv preprint arXiv:2303.00272, 2023. 


