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Abstract 
Additive Manufacturing has opened new possibilities for products in industries such as aerospace, healthcare, and automotive, 
especially with its ability to create complex geometries and customized shapes. Nevertheless, there are still some challenges to 
overcome for large-scale industrial production. One barrier to adopt Additive Manufacturing for a large-scale production is the 
uncertainty about the quality of the final product. Therefore, quality assurance represents a major challenge for Additive 
Manufacturing. On the one hand, conventional standards are unsuitable for a holistic quality assurance, due to the complex designs 
made possible by Additive Manufacturing. For geometric inspection those standards are not able to adequately address freeform 
surfaces of additively manufactured products. On the other hand, the variety of possible defect types occurring at different stages in 
the Additive Manufacturing process chain require complementary quality control strategies that are currently operated isolated from 
each other. Therefore, cross-process chain linkage of the measurement data is hampered, and quality-relevant process interaction 
cannot be considered. 
This work presents a voxel model that is able to incorporate multiple defect types and deviations at once and can represent tolerances 
and deviations of freeform surfaces. This voxel model can therefore act as a quality model for the quality assurance of the component. 
For this purpose, the data points acquired in the measurements must be registered in a first step. Thereby, different data structures, 
which can be, for example, volume data or surface data, must be merged without a loss of information. To facilitate this data fusion, 
a 3D model (nominal model) of the component can be transformed into a structured voxel model, in which each voxel represents a 
measurement point. The measurement data (actual model), which in this work will be in-situ profile data of each layer acquired by a 
laser line sensor, is stored in this model. Through this, each nominal voxel can be compared with a corresponding actual voxel, 
regarding internal defects and geometrical deviations. In addition, tolerances for different defect types can be defined in each voxel, 
which allows for a statement on the quality of the component. 
 
Geometric modelling, Model, Quality assurance          

 

1. Introduction 

With the ability to manufacture components with almost no 
constraints, Additive Manufacturing (AM) is often referred to as 
a disruptive technology. Novel applications such as highly 
functional components for high-tech products that cannot be 
produced with conventional manufacturing products are 
enabled through AM.[1] In addition, the possibility to 
manufacture topologically optimized components offers a high 
potential for lightweight applications and thus, contributes to 
more resource-efficient product lifecycles [2]. Nevertheless, AM 
is still a relatively young manufacturing process, and there are 
still some challenges to overcome for widespread adoption [1, 
3]. One of these challenges is the build-up of process knowledge 
to ensure a stable manufacturing process and a minimal 
development time for the qualification of new components and 
materials [1, 4, 5]. Due to the complexity of the AM processes 
and the multitude of influencing parameters, it is challenging to 
link occurring defects to the associated process parameters, 
which can be monitored by sensors or can be retrieved from the 
machine [6, 7]. An advantage of AM is that there is the possibility 
to have a process parallel generation of a quality model through 
in-situ measurements of different sensors. For in-situ quality 
assurance, however, it must be possible to assign the defects to 
corresponding sensor data. For this to be achieved, the sensor 

data and a nominal model must be transformed into the same 
coordinate system. Especially for multimodal sensor data, 
registration requires considerable effort. Since the acquired 
sensor data sets usually have different resolutions, not every 
data point of a sensor can be linked to a corresponding data 
point from another sensor. As a result, information is either lost 
or additional uncertainty is added to the data set due to the 
interpolation of data points. [8, 9] In the process chain of 
additively manufactured products, the AM process is often 
followed by additional process steps in which also 
measurements are done. In order to enable traceability of the 
data to any defects or irregularities that have occurred, cross-
process chain linkage of this acquired measurement data must 
be ensured. However, conventional quality models do not offer 
the possibility to represent different component states in one 
model. [10, 11] Since AM components are usually used for high-
end products, they must meet high-quality requirements, which, 
in most cases, means no occurrence of defects. [12] 
Nevertheless, even with a complete digitization of the 
components, holistic quality assurance cannot be guaranteed. 
Especially for topology-optimized components tolerances and 
deviations cannot be properly treated by existing norms. This is 
mainly because corresponding norms work with regular 
geometries that cannot be applied to topology-optimized 
surfaces and volumes. [13–15] According to the deficits 
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identified, the following requirements for a holistic quality 
assurance arise: 

• Mapping of different sensor data, machine data, and 
defect types in one model 

• Mapping of different component states in one model 

• Process parallel generation of model for in-situ 
quality assurance 

• Efficient evaluation of freeform surfaces 
In this paper, a Voxel-based Quality Assurance approach is 

presented, which addresses the described requirements. In the 
first step, the state of the art is summarized and evaluated to 
which degree it can tackle these requirements. Subsequently, 
the Voxel-based Quality Assurance is presented and discussed. 
Finally, a summary and an outlook follow. 

2. Related Work and state of the art 

2.1. Modelling of geometrical deviations in Additive 
Manufacturing 

Additive Manufacturing and the associated possibility of 
manufacturing components with complex geometries result in 
corresponding challenges for geometric quality assurance. In 
general, geometric quality assurance, i.e., the determination of 
geometric deviations and their comparison with the tolerances, 
is carried out based on GPS standards. Thereby, the deviations 
are determined based on standard geometries. Irregular 
geometries are tolerated by defining a tolerance zone around 
the corresponding geometry. [16, 17] Nevertheless, there are 
also some limitations regarding the GPS standard. On the one 
hand, there are no methods for the efficient tolerancing of 
complex structures such as grids or topology-optimized surfaces. 
On the other hand, it must be possible to define adaptive 
tolerance zones that take into account the measurement 
method used and the measurement uncertainty. [15] Despite 
these disadvantages, which are primarily referred to as the GPS 
standard, there are some approaches in the literature to define 
tolerance zones adaptively. Pagani et al. [18] presented an 
adaptive tolerancing algorithm. They were able to divide 
complex structures into multiple tolerance zones based on local 
curvature. However, only transitions and no sharp boundaries 
between different tolerance zones can be defined. Since the 
GPS-based approaches primarily work with surface data, they 
are unsuitable for storing various sensor data and component 
states, and for a process-parallel generation. 

Other promising approaches are voxel-based approaches for 
determining deviations and tolerancing free-form surfaces. The 
voxel structure of this geometrical voxel model makes it 
predestined for in-process generation. [19–21]. Petrò et al. [21] 
described a method for voxel-based geometrical tolerancing of 
additively manufactured components. Tolerances could be 
defined in accordance with the GPS standard. In addition, the 
authors were able to define much more precise tolerance zones 
than with previous standards. Nevertheless, defining a tolerance 
zone makes the model unnecessarily large. This is not conducive 
to efficient evaluation of the geometry. Another disadvantage of 
this geometric voxel-based approach is that only the information 
whether material is present in the voxel or not can be stored. 
This allows only data from 3D measurement systems to be 
integrated into the model. 

2.2. Data fusion approaches in Additive Manufacturing 
To be able to interpret the sensor data in the sense of the AM 

process, this multimodal data must first be put into context. In 
the literature, there are several data fusion approaches for AM. 
Many data fusion approaches are primarily about merging in-
situ sensor data. This means that the data is recorded and 
merged layer by layer. Accordingly, a merged data set is usually 
stored for each layer. In most cases, thermographic data is 
merged with 2D camera data and the process parameters. In 
some cases, acoustic emissions and surface profiles are also 
considered in the data fusion. [22, 23] In addition to pure in-situ 
approaches, there are also data fusion approaches that allow 
the fusion of the acquired data along the process chain [9, 25]. 
Donegan et al. [9] presented a method to merge volumetric in-
situ and CT data and then compare it to the nominal in the form 
of surface data. Although this work is promising the fused data 
set is transformed into surface data (STL) for evaluation. 
Accordingly, the volumetric data is lost, and the method is 
primarily suitable for the monitoring of geometric quality. Due 
to the transformation into surface data, the data fusion 
approaches according to the GPS approaches are rather 
unsuitable for an efficient evaluation of freeform surfaces. 
 
2.3. Intermediate Results 

Table 1 summarizes the methods of the state of the art and 
evaluates the degree of fulfillment to address the described 
requirements. 

 
Table 1. Ability of the methods available in the prior art to address the 
requirements described. 

3. Voxel-based Quality Assurance 

3.1. Model Structure 
The basic idea behind Voxel-based Quality Assurance is to 

store sensor and machine data in voxels, where a voxel 
represents a data point on a regularly spaced, three-dimensional 
grid (volumetric pixel). The model can be successively expanded 
in the process and in the entire process chain. On the one hand, 
this should allow different component states to be described 
and, on the other hand, defects to be traced back to their cause 
even over whole process chains. Figure 1 illustrates the general 
structure of a voxel. In this example, the part is digitized by a 
laser line sensor during the AM process. The final component is 
checked in the final quality assurance process using a high-
resolution surface scan and a CT volume scan in this example. 
Because each voxel is stored with sensor data and it is also 
possible to process this data, the quality of the component can 
be determined in each voxel at any time in the process chain.



  

 

 
Figure 1. Conceptional design of voxel model with data inputs and the general content of a voxel. Different sensor data, machine data, and the nominal 
model is voxelized and merged into separated voxels.
 

3.2. Implementation 
To create the voxel model, several steps have to be carried 

out. In general, these steps are shown in Figure 2. First, the 
nominal model of the component is created. For this purpose, a 
point cloud is simulated based on the sliced CAD model and the 
AM process used. Depending on the lowest defined tolerance, 
the voxel size is defined. Then, the point cloud is transformed 
into a voxel model (voxelization). The previously defined 
tolerances are set according to the GPS standard. In addition, 
tolerance zones are set for free-form surfaces. The next step is 
to add the measurement data and machine data, which will be 
referred to as actual data in the following, to the model. In our 
example, this is the data generated in each layer during an FDM 
AM process by a laser light section sensor. The generated point 
cloud is then voxelized and registered with the corresponding 
layer of the nominal model. The CT and FLP data generated in 
the downstream quality assurance processes are also 
transformed into voxel data and registered with the nominal 
model. In the resulting voxel model, the quality can finally be 
determined by comparing the nominal model in combination 
with the tolerances and the actual data. 

 
Figure 2. Conceptional implementation of Voxel-based Quality 
Assurance 
 

3.3. Voxel-based Quality Determination 
As mentioned before, sensor data is stored in each voxel. This 

data can now be used to evaluate the quality of the investigated 
part on a voxel basis. A geometric approach to evaluate the 
geometric deviation and the accordance with the tolerances can 
greatly increase the memory requirements of the voxel model. 
Therefore, a novel data-based voxel-based approach is 
proposed for evaluation (see Figure 3). The tolerances are 
transformed into data-based tolerances. That means tolerances 
are stored in nominal voxels only. This ensures that the size of 
the voxel model is kept to a minimum. In the following, all 
considered voxels 𝑉 = {𝑣1, … , 𝑣𝑗} are distinguished between 

nominal voxels 𝑁 = {𝑛1, … , 𝑛𝑘} and actual voxels 𝐴 =

{𝑎1, … , 𝑎𝑙}. A nominal voxel 𝑛𝑖 ∈ 𝑁 is a voxel in which material 
should be present according to the nominal model. An actual 
voxel 𝑎𝑖 ∈ 𝐴 is a voxel in which material is present according to 
the acquired data. The desired state for each component is that 
both nominal material and actual material are present in a voxel 
𝑣𝑖 = 𝑛𝑖 + 𝑎𝑖, which is represented by a green voxel in Figure 3. 

To determine the tolerance, a distinction is made between two 
cases. In the first case, which is represented by a yellow voxel in 
Figure 3, a voxel contains actual material but no nominal 
material 𝑣𝑖 = 𝑎𝑖. In the first step, the nearest nominal edge 
voxel is determined, and the distance is calculated. This nominal 
voxel contains an array of outer tolerance voxels 𝑇𝑜𝑢𝑡 =
{𝑡1, … , 𝑡𝑚} which acts as a voxel individual tolerance zone. In 
the next step, the tolerance voxel closest to the considered 
actual voxel is determined 𝑡𝑐𝑙𝑜𝑠𝑒𝑠𝑡 =  min

𝑡∈𝑇
||𝑡 − 𝑎𝑖||. Now the 

distance from the tolerance voxel to the nominal voxel 𝑑𝑡 =
 ||𝑡 − 𝑛𝑖|| and the distance from the actual voxel to the nominal 
voxel 𝑑𝑎 =  ||𝑎𝑖 − 𝑛𝑖|| are compared. If 𝑑𝑡 >  𝑑𝑎  , 𝑎𝑖 is inside 
the tolerance zone. If 𝑑𝑡 ≤  𝑑𝑎, 𝑎𝑖 is not in the tolerance zone. 
In the second case, which is in Figure 3 represented by a blue 
voxel, there is only nominal material present 𝑣𝑖 = 𝑛𝑖. The 
tolerance is determined almost analogously to the first case. The 
difference is that now an array of inner tolerance voxels 𝑇𝑖𝑛 =
{𝑡1, … , 𝑡𝑚}  is considered. In addition, thresholds can be set for 
the number of voxels that are adjacent to each other. This 
means that the irregularities are only counted if a certain 
number of missing voxels is given. In this way, inaccuracies due 
to measurement errors can be reduced. Internal defects such as 
pores are determined analogously.  

This allows for efficient mapping of positive and negative 
deviation of geometry and tolerance conformance. The model 
can solve the requirements described above. Due to the voxel 
structure, the model can store different sensor and machine 
data, as well as nominal data voxel-based. At the same time, 
different component states can be represented in the voxels and 
accordingly in the model. Since the voxel model is a volumetric 
model, it can be built up successively by adding voxels and is 
therefore predestined for in-situ quality assurance. Since any 
type of information can be stored in the data-based voxel model, 
any type of error can also be represented in the voxel. In 
addition, the presented approach allows efficient modeling of 
tolerance zones for complex geometries. Since the tolerances 
are represented in the nominal voxel the memory requirements 
of the model can be kept low. 

   
 
 



  

 

 
Figure 3. Voxel-based geometric Quality Determination  

4. Conclusion and future work      

In this work, a Voxel-based model is presented, which can be 
used for the quality assurance of additively manufactured 
components. Existing requirements of the industry are 
presented and the deficits of existing standards and solutions 
from the state of the art are identified. The presented model 
provides the ability to combine different sensor and machine 
data at different stages in the process chain.  Additionally, it can 
implement existing standards in geometric quality assurance 
and can even overcome the limitations of these standards. This 
allows the model to be used for real-time quality assurance. The 
purpose of this work is to introduce the Voxel-based Quality 
Assurance concept. An implementation, respective validation, 
and examination of the practical applicability are part of future 
work. Thereby the steps must be carried out according to the 
previously described implementation. First, a nominal voxel 
model must be initiated. In the next step, the acquired in-situ 
data is registered in the model. Finally, the quality is determined 
by the processing of the data. Furthermore, the model can 
create a link between defects and machine data, enabling root-
cause analysis and creating additional process knowledge. 
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