Topological Optimization for AM
Contribution to design of support structures
Table of Contents

1. Introduction to Topological Optimization
2. Application to AM: Optimizing the design of support structures
3. Conclusions and perspectives
Topological Optimization

Principles

• Part of the design process of a shape
• Find a shape Ω which minimizes an objective F with respect to the constraints G_i

$$\begin{cases} \min_{\Omega \subset D} F(\Omega) \\ \forall i, G_i(\Omega) \leq G_{max}^i \end{cases}$$

• Examples of objective: volume, mass
• Examples of constraint: eigenfrequencies, displacement of a node, thermal flux

• Iterative method: we start from an initial shape Ω_0 that we improve step-by-step
Topological Optimization
Shape representation on fixed mesh

• Design Space is meshed once and never modified during optimization

• Shape represented with a Level-Set, the signed distance to boundary
 - $\psi(x) < 0$ if inside the shape
 - $\psi(x) > 0$ if outside the shape
 $\Rightarrow \psi(x) = 0$ the boundary of the shape

• Precise knowledge of the location of the boundary on a non-fitting mesh

Engine support Courtesy Renault
Topological Optimization

Key features of TOPAZE

• Physic engines
 • Static (linear or non-linear)
 • Eigenmode computation
 • Harmonic response (direct or modal)
 • Thermal

• Criteria
 • Volume, surface, perimeter
 • Mass, thickness
 • Molding, symmetry
 • Displacement, velocity, acceleration, temperature
 • Stress, strain, heat flux

• Fully integrated Into Visual-Environment
 • More info https://myesi.esi-group.com/products/multiphysics
Example: Engine Bracket

Geometry and mechanics

- System units: mm, t, sec, K
- Material: Titan alloy Ti-6Al-4V
 - Young’s Modulus = 114000 MPa
 - Poisson’s ratio = 0.342
 - Density = 4.2e-9 t/mm3
 - Thermal conductivity 7.2 W/m/K
- 3 subcases
 - Static Mechanical analysis
 - 4 load cases
 - Eigen Frequency
 - Free-free 10 modes
 - Static Thermal analysis
 - 1 load case
Example: Engine Bracket
Performance specifications

- On subcase 1:
 - Volume reduction
 - Displacement norm Node 22746 LC1 < 0.7 mm
 - Displacement norm Node 22746 LC2 < 0.8 mm
 - Displacement norm Node 22746 LC3 < 0.5 mm
 - Displacement norm Node 22747 LC4 < 0.06 mm
 - Max across E_OPTIMIZED of Von Mises Stress LC1 - LC4 < 1000 MPa

- On subcase 2:
 - First physical Eigenfrequency (MODE 7) > 3850 Hz

- On subcase 3:
 - Max across CONTROL_AREA of Temperature < 480°K
Example: Engine Bracket

Results
Example: Engine Bracket
The remeshed optimal shape

- At the end of an optimization, TOPAZE remeshes the optimal shape
Application to Additive Manufacturing

Support structures

• The aim is to minimize the thermo-mechanical effects of overhangs

• Collaboration with Grégoire Allaire and Beniamin Bogosel, CMAP, Polytechnique School
 • Support optimization in additive manufacturing for geometric and thermo-mechanical constraints”, Allaire G, Bihr M, and Bogosel, B, to be submitted

• Part of SOFIA project (SOLution pour la Fabrication Industrielle Additive métallique), https://www.sofia-3d.fr/
Application to Additive Manufacturing

Support structures: Mechanical

• First step is minimizing the mechanical effects of overhangs, without taking into account a thermal model
 • Thermo-mechanical is a bit more complex

• We suppose that the shape is already designed

• We only optimize the supports
 • The model is submitted to the gravity
 • Objective: minimize volume of the supports
 • Constraint: compliance of the (shape+supports) has a maximum
Application to Additive Manufacturing
Support structures: examples

Pictures courtesy of Beniamin Bogosel, CMAP, Polytechnique School
Application to Additive Manufacturing
Support structures: examples

Pictures courtesy of Beniamin Bogosel, CMAP, Polytechnique School
Application to Additive Manufacturing
Support structures: Thermal evacuation

• We suppose that the shape is already designed

• We optimize the supports to maximize the thermal evacuation:
 • The model is submitted to a constant thermal source in the shape
 • One of the side of the model is “cold” (T=0)
 • Objective: minimize thermal compliance of (shape + supports)
 • Constraint: volume of supports is bounded
Application to Additive Manufacturing

Support structures: examples

Pictures courtesy of Beniamin Bogosel, CMAP, Polytechnique School
Application to Additive Manufacturing
Support structures with forbidden areas

• We suppose that the shape is already designed.

• We optimize the support structures (for thermic or static problem), but they can’t lean on unattainable areas
 • Geometrical criterion:
 • We compute the “access range” of each areas
 • Penalization of the volume of support outside these “access ranges”

• Special treatment of the level-set on these areas
Application to Additive Manufacturing
Support structures: example

U-shaped Tube without forbidden areas

Pictures courtesy of Beniamin Bogosel, CMAP, Polytechnique School
Application to Additive Manufacturing
Support structures: example

U-shaped Tube with forbidden areas

Pictures courtesy of Beniamin Bogosel, CMAP, Polytechnique School
Conclusions

• **TOPAZE** allows users to solve problems of topological optimization
 • It is based on the Level-Set technology, which guaranties an exact definition of the optimal shape

• For the 2020 version, as part of the SOFIA project, we plan to integrate tools for supports
 • Mechanical optimization
 • Thermal optimization
 • Forbid some areas

• More developments are in progress
 • Full thermo-mechanical optimizations
 • Optimization of the supports taking into account the slice-by-slice process of AM
 • Synergy **ESI-AM, our solutions for Metal Additive Manufacturing**
Thank you
Topological Optimization

Shape representation with a Level-Set

- Simple scalar function ψ to define the shape
- Conventionally: the signed distance to boundary
 - $\psi(x) < 0$ if inside the shape
 - $\psi(x) > 0$ if outside the shape
 - $\Rightarrow \psi(x) = 0$ the boundary of the shape
- Precise knowledge of the location of the boundary on a non-fitting mesh
- Evolution of the shape using a descent direction ν, computed from objective and constraints.
 - Hamilton-Jacobi equation $\frac{\partial \psi}{\partial t} + \nu \| \nabla \psi \| = 0$
Geometrical Constraints

Maximum Thickness

• Criterion that leads to topological changes depending on the threshold
• The optimizer changes the number of bars to fit the constraint

No e

$e = 0.4$

$e = 0.2$
Semi Infinite Constraints

Maximum Von Mises example

- L-shape optimization
 - A fillet is needed to reduce stress
Manufacturing Constraints

Molding

• Criterion that leads to topological changes depending on the molding direction and parting surface definition
• The parting surface can also be unknown

No molding

Molding in Z direction with parting surface Z=0

Molding in Y direction with parting surface Y=0.5

Molding in Z direction without parting surface